31,298 research outputs found

    A Modeling of the Super-Eddington Luminosity in Nova Outbursts: V1974 Cygni

    Full text link
    We have modeled nova light curves exceeding the Eddington luminosity. It has been suggested that a porous structure develops in nova envelopes during the super Eddington phase and the effective opacity is much reduced for such a porous atmosphere. Based on this reduced opacity model, we have calculated envelope structures and light curves of novae. The optically thick wind model is used to simulate nova winds. We find that the photospheric luminosity and the wind mass-loss rate increase inversely proportional to the reducing factor of opacities, but the wind velocity hardly changes. We also reproduce the optical light curve of V1974 Cygni (Nova Cygni 1992) in the super-Eddington phase, which lasts 13 days from the optical peak 1.7 mag above the Eddington luminosity.Comment: 8 pages, 4 figures, to appear in ApJ

    Toward a unified light curve model for multi-wavelength observations of V1974 Cygni (Nova Cygni 1992)

    Full text link
    We present a unified model for optical, ultraviolet (UV), and X-ray light curves of V1974 Cygni (Nova Cygni 1992). Based on an optically thick wind model of nova outbursts, we have calculated light curves and searched for the best fit model that is consistent with optical, UV, and X-ray observations. Our best fit model is a white dwarf (WD) of mass 1.05 M_\sun with a chemical composition of X=0.46, C+N+O=0.15, and Ne = 0.05 by mass weight. Both supersoft X-ray and continuum UV 1455 \AA light curves are well reproduced. Supersoft X-rays emerged on day ~ 250 after outburst, which is naturally explained by our model: our optically thick winds cease on day 245 and supersoft X-rays emerge from self-absorption by the winds. The X-ray flux keeps a constant peak value for ~ 300 days followed by a quick decay on day ~ 600. The duration of X-ray flat peak is well reproduced by a steady hydrogen shell burning on the WD. Optical light curve is also explained by the same model if we introduce free-free emission from optically thin ejecta. A t^{-1.5} slope of the observed optical and infrared fluxes is very close to the slope of our modeled free-free light curve during the optically thick wind phase. Once the wind stops, optical and infrared fluxes should follow a t^{-3} slope, derived from a constant mass of expanding ejecta. An abrupt transition from a t^{-1.5} slope to a t^{-3} slope at day ~ 200 is naturally explained by the change from the wind phase to the post-wind phase on day ~ 200. The development of hard X-ray flux is also reasonably understood as shock-origin between the wind and the companion star. The distance to V1974 Cyg is estimated to be ~ 1.7 kpc with E(B-V)= 0.32 from the light curve fitting for the continuum UV 1455 \AA.Comment: 8 pages, 4 figures, to appear in the Astrophysical Journa

    Unusual Phase Reversal of Superhumps in ER Ursae Majoris

    Full text link
    We studied the evolution of superhumps in the peculiar SU UMa-type dwarf nova, ER UMa. Contrary to the canonical picture of the SU UMa-type superhump phenomena, the superhumps of ER UMa show an unexpected phase reversal during the very early stage (~5 d after the superoutburst maximum). We interpret that a sudden switch to so-called late superhumps occurs during the very early stage of a superoutburst. What had been believed to be (ordinary) superhumps during the superoutburst plateau of ER UMa were actually late superhumps. The implication of this discovery is briefly discussed.Comment: 4 pages, 5 figures, submitted to Publ. Astron. Soc. Japa

    Antiferromagnetic Order in Pauli Limited Unconventional Superconductors

    Get PDF
    We develop a theory of the coexistence of superconductivity (SC) and antiferromagnetism (AFM) in CeCoIn5. We show that in Pauli-limited nodal superconductors the nesting of the quasi-particle pockets induced by Zeeman pair-breaking leads to incommensurate AFM with the moment normal to the field. We compute the phase diagram and find a first order transition to the normal state at low temperatures, absence of normal state AFM, and coexistence of SC and AFM at high fields, in agreement with experiments. We also predict the existence of a new double-Q magnetic phase

    Dwarf Novae in the Shortest Orbital Period Regime: II. WZ Sge Stars as the Missing Population near the Period Minimum

    Full text link
    WZ Sge-type dwarf novae are characterized by long recurrence times of outbursts (~10 yr) and short orbital periods (<~ 85 min). A significant part of WZ Sge stars may remain undiscovered because of low outburst activity. Recently, the observed orbital period distribution of cataclysmic variables (CVs) has changed partly because outbursts of new WZ Sge stars have been discovered routinely. Hence, the estimation of the intrinsic population of WZ Sge stars is important for the study of the population and evolution of CVs. In this paper, we present a Bayesian approach to estimate the intrinsic period distribution of dwarf novae from observed samples. In this Bayesian model, we assumed a simple relationship between the recurrence time and the orbital period which is consistent with observations of WZ Sge stars and other dwarf novae. As a result, the minimum orbital period was estimated to be ~70 min. The population of WZ Sge stars exhibited a spike-like feature at the shortest period regime in the orbital period distribution. These features are consistent with the orbital period distribution previously predicted by population synthesis studies. We propose that WZ Sge stars and CVs with a low mass-transfer rate are excellent candidates for the missing population predicted by the evolution theory of CVs.Comment: 9 pages, 5 figures, accepted for publication in PAS

    Electron spin interferometry using a semiconductor ring structure

    Get PDF
    A ring structure fabricated from GaAs is used to achieve interference of the net spin polarization of conduction band electrons. Optically polarized spins are split into two packets by passing through two arms of the ring in the diffusive transport regime. Optical pumping with circularly polarized light on one arm establishes dynamic nuclear polarization which acts as a local effective magnetic field on electron spins due to the hyperfine interaction. This local field causes one spin packet to precess faster than the other, thereby controlling the spin interference when the two packets are combined.Comment: 4 pages, 2 figure

    Theoretical Sensitivity Analysis for Quantitative Operational Risk Management

    Full text link
    We study the asymptotic behavior of the difference between the values at risk VaR(L) and VaR(L+S) for heavy tailed random variables L and S for application in sensitivity analysis of quantitative operational risk management within the framework of the advanced measurement approach of Basel II (and III). Here L describes the loss amount of the present risk profile and S describes the loss amount caused by an additional loss factor. We obtain different types of results according to the relative magnitudes of the thicknesses of the tails of L and S. In particular, if the tail of S is sufficiently thinner than the tail of L, then the difference between prior and posterior risk amounts VaR(L+S) - VaR(L) is asymptotically equivalent to the expectation (expected loss) of S.Comment: 21 pages, 1 figure, 4 tables, forthcoming in International Journal of Theoretical and Applied Finance (IJTAF

    A Theoretical Light-Curve Model for the Recurrent Nova V394 Coronae Austrinae

    Get PDF
    A theoretical light curve for the 1987 outburst of V394 Coronae Austrinae (V394 CrA) is modeled to obtain various physical parameters of this recurrent nova. We then apply the same set of parametersto a quiescent phase and confirm that these parameters give a unified picture of the binary. The early visual light curve (1-10 days after the optical maximum) is well reproduced by a thermonuclear runaway model on a very massive WD close to the Chandrasekhar limit (1.37 +- 0.01 M_sun). The ensuing plateau phase (10-30 days) is also reproduced by the combination of a slightly irradiated MS and a fully irradiated flaring-up disk with a radius ~1.4 times the Roche lobe size. The best fit parameters are the WD mass 1.37 M_sun, the companion mass 1.5 M_sun (0.8-2.0 M_sun is acceptable), the inclination angle of the orbit i~65-68 degree, and the flaring-up rim ~0.30 times the disk radius. The envelope mass at the optical peak is estimated to be ~6 x 10^{-6} M_sun, which indicates an average mass accretion rate of 1.5 x 10^{-7} M_sun yr^{-1} during the quiescent phase between the 1949 and 1987 outbursts. In the quiescent phase, the observed light curve can be reproduced with a disk size of 0.7 times the Roche lobe size and a rather slim thickness of 0.05 times the accretion disk size at the rim. About 0.5 mag sinusoidal variation of the light curve requires the mass accretion rate higher than ~1.0 x 10^{-7} M_sun yr^{-1}, which is consistent with the above estimation from the 1987 outburst. These newly obtained quantities are exactly the same as those predicted in a new progenitor model of Type Ia supernovae.Comment: 9 pages including 4 figures, to appear in the Astrophysical Journal, Part
    • …
    corecore